论文标题
用于在哈密顿波功能空间中求解量子化学的混合量子古典算法
Hybrid quantum-classical algorithms for solving quantum chemistry in Hamiltonian-wavefunction space
论文作者
论文摘要
变量量子本元(VQE)通常优化量子电路中的变分参数,以准备量子系统的特征状态。它在许多问题上的应用可能涉及一组哈密顿人,例如,分子的哈密顿量是核构型的函数。在本文中,我们将哈密顿量的衍生物纳入了VQE,并开发了一些杂交量子古典算法,该算法探索了哈密顿量和波浪函数空间以进行优化。为了更有效地解决量子化学问题,我们首先提出相互梯度下降算法,以通过更新哈密顿量和波函数来优化几何学优化,这表明迅速收敛到分子的平衡结构。然后,我们建立了微分方程,该方程式如何使用汉密尔顿的内在参数进行优化的波函数变化变化,从而可以加快能源势表面的计算。我们的研究提出了通过考虑哈密顿和波函数的空间来更有效地解决量子系统的混合量子古典算法的方向。
Variational quantum eigensolver~(VQE) typically optimizes variational parameters in a quantum circuit to prepare eigenstates for a quantum system. Its applications to many problems may involve a group of Hamiltonians, e.g., Hamiltonian of a molecule is a function of nuclear configurations. In this paper, we incorporate derivatives of Hamiltonian into VQE and develop some hybrid quantum-classical algorithms, which explores both Hamiltonian and wavefunction spaces for optimization. Aiming for solving quantum chemistry problems more efficiently, we first propose mutual gradient descent algorithm for geometry optimization by updating parameters of Hamiltonian and wavefunction alternatively, which shows a rapid convergence towards equilibrium structures of molecules. We then establish differential equations that governs how optimized variational parameters of wavefunction change with intrinsic parameters of the Hamiltonian, which can speed up calculation of energy potential surface. Our studies suggest a direction of hybrid quantum-classical algorithm for solving quantum systems more efficiently by considering spaces of both Hamiltonian and wavefunction.