论文标题

具有多政治点原理的最小尺寸trans变的暗物质

Dark matter in minimal dimensional transmutation with multicritical-point principle

论文作者

Hamada, Yuta, Kawai, Hikaru, Oda, Kin-ya, Yagyu, Kei

论文摘要

我们研究了一个模型,该模型具有两个实际标量场,该模型在Coleman-Weinberg机制的类似物中最小生成了指数级别的尺度。经典的规模不变性 - 在这种量表生成中所需的树级动作中缺少尺寸参数 - 自然可以理解为多点临界原理的特殊情况。这个两尺度模型可以将其搭配到标准模型HIGGS字段,以实现Electroweak量表周围的野外值的最大临界性多重性,从而将经典量表的不变性泛化到更广泛的关键性类别。作为奖励,可以将两个标量之一识别为希格斯 - 门户暗物质。我们发现,该模型可以与深色物质物质丰度,其直接检测实验和最新的LHC数据的约束一致,同时将扰动性达到普朗克量表。然后,我们提出了满足所有这些约束的成功基准点:暗物质的质量是几个TEV,其带有核的散射横截面为$ 10^{ - 9} $ pb,在不久的将来实验中。额外的希格斯玻色子$ h $的质量比100 GEV的订单小或订单,$ e^+e^ - \ to zh $的横截面对于碰撞250 GEV的FB水平可能为FB水平,针对未来的Lepton Colliders。

We investigate a model with two real scalar fields that minimally generates exponentially different scales in an analog of the Coleman-Weinberg mechanism. The classical scale invariance -- the absence of dimensionful parameters in the tree-level action, required in such a scale generation -- can naturally be understood as a special case of the multipoint criticality principle. This two-scalar model can couple to the Standard Model Higgs field to realize a maximum multiplicity of criticality for field values around the electroweak scale, providing a generalization of the classical scale invariance to a wider class of criticality. As a bonus, one of the two scalars can be identified as Higgs-portal dark matter. We find that this model can be consistent with the constraints from dark matter relic abundance, its direct detection experiments, and the latest LHC data, while keeping the perturbativity up to the Planck scale. We then present successful benchmark points satisfying all these constraints: The mass of dark matter is a few TeV, and its scattering cross section with nuclei is of the order of $10^{-9}$ pb, reachable in near future experiments. The mass of extra Higgs boson $H$ is smaller than or of the order of 100 GeV, and the cross section of $e^+e^- \to ZH$ can be of fb level for collision energy 250 GeV, targetted at future lepton colliders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源