论文标题
非最少耦合的爱因斯坦 - 杨麦尔米尔斯理论中旋转常规黑洞的准模式,准静脉振荡和阴影
Quasinormal modes, quasiperiodic oscillations and shadow of rotating regular black holes in non-minimally coupled Einstein-Yang-Mills theory
论文作者
论文摘要
在本文中,我们使用纽曼 - 贾尼斯(Janis-Janis)算法通过非复杂性径向坐标程序,在爱因斯坦 - 杨米尔(Einstein-Yang-Mills)(EYM)中使用阳米尔斯电磁源(EYM)理论中,用阳米尔斯电磁源(EYM)理论获得了一个有效的度量标准。然后,我们研究了无质量标量和电磁场以及准磁性振荡(QPOS)的BH阴影和准模式(QNM)。为此,我们还研究了旋转EYM BH的嵌入图。研究了使用时域积分方法的能量条件,阴影曲率半径,拓扑以及标量和电磁扰动的动态演化。我们表明,阴影半径通过增加磁电荷而降低,而标量和电磁场的QNM的实际部分通过增加磁电荷来增加。该结果与阴影半径与QNM的实际部分之间的反关系一致。此外,我们通过QPOS的频率分析和M87 Central Black Hole铸造的阴影数据来研究了EYM参数$λ$的观察约束。我们还发现,EYM BH的衰减速率比中性的速度慢,最终呈尾巴。我们认为,基于其阴影的角直径之间的差异,可以将旋转的EYM黑洞与Kerr-Newman黑洞区分开,并具有磁性电荷。
In this paper we obtain an effective metric describing a regular and rotating magnetic black hole (BH) solution with a Yang-Mills electromagnetic source in Einstein-Yang-Mills (EYM) theory using the Newman--Janis algorithm via the non-complexification radial coordinate procedure. We then study the BH shadow and the quasinormal modes (QNMs) for massless scalar and electromagnetic fields and the quasiperiodic oscillations (QPOs). To this end, we also study the embedding diagram for the rotating EYM BH. The energy conditions, shadow curvature radius, topology and the dynamical evolution of scalar and electromagnetic perturbations using the time domain integration method are investigated. We show that the shadow radius decreases by increasing the magnetic charge, while the real part of QNMs of scalar and electromagnetic fields increases by increasing the magnetic charge. This result is consistent with the inverse relation between the shadow radius and the real part of QNMs. In addition, we have studied observational constraints on the EYM parameter $λ$ via frequency analysis of QPOs and the EHT data of shadow cast by the M87 central black hole. We also find that the decaying rate of the EYM BH is slower than that of the neutral and ends up with a tail. We argue that the rotating EYM black hole can be distinguished from the Kerr-Newman black hole with a magnetic charge based on the difference between the angular diameters of their shadows.