论文标题
在极化NLS1 MRK 1239中发现主要的X射线发射和可能的Starburst组件
Uncovering the primary X-ray emission and possible starburst component in the polarized NLS1 Mrk 1239
论文作者
论文摘要
X射线观察显示了跨越18年的独特NLS1 Galaxy MRK 1239。 XMM-Newton,Suzaku,Swift和Nustar的数据合并,以获得源头的宽带,多上观点。在18年中,3-10 KEV频段的频谱变异性。对Nustar和Suzaku光曲线的分析还表明,3-10 KEV频段的快速变化,这与源的NLS1定义一致。但是,在任何时间尺寸的3 keV下都没有看到可变性。采用了两个不同的物理模型来描述〜3 keV上方和以下的数据。低能量是由大型物理尺度上可能与Starburst组件相关的热散射气体主导的。较高的能量谱由中央区域的发射主导。对于中央区域的排放,考虑了电离部分覆盖和相对论的模糊反射。在这两种情况下,基础功率法的光子指数均为$γ\ sim2.3-2.4 $。始终需要一个遥远的反射器,一个中性的部分覆盖组件,其覆盖分数接近$ \ sim1 $,以及始终需要Starburst排放的贡献。模糊的反射模型需要以反射为主的光谱,这可能与源的发射率指数和无线电特性不符。相比之下,电离部分覆盖模型中所需的两个吸收成分可能对应于光学中观察到的两个不同的极化区域。无论物理模型如何,时期之间的光谱变化都是由吸收成分和短时间尺度驱动的,并通过内在的AGN变异性驱动。
X-ray observations of the unique NLS1 galaxy Mrk 1239 spanning 18-years are presented. Data from XMM-Newton, Suzaku, Swift and NuSTAR are combined to obtain a broad-band, multi-epoch view of the source. There is spectral variability in the 3-10 keV band over the 18-years. An analysis of the NuSTAR and Suzaku light curves also suggests rapid variability in the 3-10 keV band, which is consistent with the NLS1 definition of the source. However, no variability is seen below 3 keV on any timescale. Two distinct physical models are adopted to describe the data above and below ~3 keV. The low energies are dominated by a hot, diffuse gas likely associated with a starburst component at large physical scales. The higher energy spectrum is dominated by emission from the central region. Ionised partial covering and relativistic blurred reflection are considered for the central region emission. In both cases, the underlying power law has a photon index of $Γ\sim2.3-2.4$. A distant reflector, a neutral partial covering component with a covering fraction near $\sim1$, and contributions from starburst emission are always required. The blurred reflection model requires a reflection dominated spectrum, which may be at odds with the low emissivity index and radio properties of the source. By contrast, the two absorption components required in the ionised partial covering model may correspond to the two distinct regions of polarization observed in the optical. Regardless of the physical model, spectral changes between epochs are driven by the absorption components and on short time scales by intrinsic AGN variability.