论文标题

功能产品产生有效的网络

Feature Products Yield Efficient Networks

论文作者

Grüning, Philipp, Martinetz, Thomas, Barth, Erhardt

论文摘要

我们将功能产品网络(FP-nets)作为一种新型的深网架构,基于一个受生物视觉原则的新构建块。对于每个输入特征映射,所谓的fp-block学习两个不同的过滤器,然后将其输出乘以。此类FP块的灵感来自于末端神经元的模型,这些模型在皮质区域V1,尤其是在V2中很常见。卷积神经网络可以通过用FP块的常规卷积代替常规卷积来转化为参数有效的FP-NET。通过这种方式,我们基于最先进的网络创建了几个新颖的FP-NET,并在CIFAR-10和ImageNet挑战上评估它们。我们表明,FP块的使用可显着减少参数的数量,而不会降低概括能力。由于到目前为止,启发式方法和搜索算法已被用来找到更有效的网络,因此我们可以基于新颖的生物启发的设计原理获得更有效的网络似乎了。

We introduce Feature-Product networks (FP-nets) as a novel deep-network architecture based on a new building block inspired by principles of biological vision. For each input feature map, a so-called FP-block learns two different filters, the outputs of which are then multiplied. Such FP-blocks are inspired by models of end-stopped neurons, which are common in cortical areas V1 and especially in V2. Convolutional neural networks can be transformed into parameter-efficient FP-nets by substituting conventional blocks of regular convolutions with FP-blocks. In this way, we create several novel FP-nets based on state-of-the-art networks and evaluate them on the Cifar-10 and ImageNet challenges. We show that the use of FP-blocks reduces the number of parameters significantly without decreasing generalization capability. Since so far heuristics and search algorithms have been used to find more efficient networks, it seems remarkable that we can obtain even more efficient networks based on a novel bio-inspired design principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源