论文标题
在最后一段渗透中,地球树的通用性
Universality of the geodesic tree in last passage percolation
论文作者
论文摘要
在本文中,我们考虑了指数级的最后一段渗透中的大地测生。我们表明,对于围绕原点的大量初始条件,终止宽度$ o(n^{2/3})$的线到点的大地测量,而长度为$ o(n)$在圆柱体中同意,固定的地球固定地测量共享同一终点。在点对点模型的情况下,我们考虑宽度$Δn^{2/3} $,长度最高为$δ^{3/2} n/(\ log(δ^{ - 1}))^3 $,并提供下层和上限,以使地理学同意该cylinder的概率。
In this paper we consider the geodesic tree in exponential last passage percolation. We show that for a large class of initial conditions around the origin, the line-to-point geodesic that terminates in a cylinder of width $o(N^{2/3})$ and length $o(N)$ agrees in the cylinder, with the stationary geodesic sharing the same end point. In the case of the point-to-point model, we consider width $δN^{2/3}$ and length up to $δ^{3/2} N/(\log(δ^{-1}))^3$ and provide lower and upper bound for the probability that the geodesics agree in that cylinder.