论文标题
叠加的资源理论:状态转换
Resource theory of superposition: State transformations
论文作者
论文摘要
有限数量的线性独立状态的组合以无法经典的方式形成叠加。在这里,使用叠加资源理论的工具,我们为一类叠加状态转换提供了条件。这些条件严格取决于基础状态的标量产物,并减少到众所周知的多数化条件,以在正生基础的极限下量子相干性。为了进一步的$ d $维系统的无叠加转换,我们为叠加状态的确定性转换提供了无叠加的操作员。有限数量的基础状态的线性独立性需要这些状态的标量产品之间的关系。借助此信息,我们确定在一定范围的标量产品上有效的最大叠加状态。值得注意的是,我们表明,对于$ d \ geq3 $,纯净叠加状态的标量产品在寻求最大足够的状态方面具有更大的位置。各种明确的例子说明了我们的发现。
A combination of a finite number of linear independent states forms superposition in a way that cannot be conceived classically. Here, using the tools of resource theory of superposition, we give the conditions for a class of superposition state transformations. These conditions strictly depend on the scalar products of the basis states and reduce to the well-known majorization condition for quantum coherence in the limit of orthonormal basis. To further superposition-free transformations of $d$-dimensional systems, we provide superposition-free operators for a deterministic transformation of superposition states. The linear independence of a finite number of basis states requires a relation between the scalar products of these states. With this information in hand, we determine the maximal superposition states which are valid over a certain range of scalar products. Notably, we show that, for $d\geq3$, scalar products of the pure superposition-free states have a greater place in seeking maximally resourceful states. Various explicit examples illustrate our findings.