论文标题
使用JWST和SPICA的组合传输光谱来限制分解系外行星的整体组成
Constraining the Bulk Composition of Disintegrating Exoplanets Using Combined Transmission Spectra from JWST and SPICA
论文作者
论文摘要
瓦解的行星是超短期的外部系外行星,似乎具有类似彗星的灰尘尾巴。它们通常被解释为低质量行星,其固体表面蒸发,其尾巴由换矿物制成。因此,尘埃尾的传输光谱可以使我们能够直接探测行星的基本组成。先前的工作已经调查了使用JWST中红外仪器进行此类观察的可行性。在这项研究中,我们探讨了是否可以使用Spica Mid-In-Frared仪器在更长的波长下添加光谱,从而获得了强大的限制。我们使用一个简单的模型来进行灰尘尾巴的空间分布,并假设各种灰尘组成产生其合成传输光谱。我们发现,JWST和Spica的联合红外光谱将使我们能够诊断出灰尘尾部的各种组成部分。 JWST将能够检测硅酸盐和碳化物的吸收特征,其特征与噪声比为$ \ gtrsim $ 3 $ 3的尾部传输光谱,该光谱的尾巴传输光谱位于距地球100 pc内的瓦解行星,其过渡深度深度深于0.5%。 Spica可以以$ \ Lessim $ 100 PC的价格区分行星的Fe-和mg晶体硅酸盐,其运输深度为$ \ gtrsim $ 2%。具有当前和未来太空望远镜的过境搜索(例如,$ TESS $和PLATO)将为此类光谱观察提供理想的目标。
Disintegrating planets are ultra-short-period exoplanets that appear to have a comet-like dust tail. They are commonly interpreted as low-mass planets whose solid surface is evaporating and whose tail is made of recondensing minerals. Transmission spectroscopy of the dust tails could thus allow us to directly probe the elementary compositions of the planets. Previous work already investigated the feasibility of such observations using the JWST mid-infrared instrument. In this study, we explore if one can obtain a strong constrain on the tail composition by adding spectroscopy at longer wavelengths using SPICA mid-infrared instrument. We use a simple model for the spatial distribution of the dust tails and produce their synthetic transmission spectra assuming various dust compositions. We find that combined infrared spectra from JWST and SPICA will allow us to diagnose various components of the dust tails. JWST will be able to detect silicate and carbide absorption features with a feature-to-noise ratio of $\gtrsim$ 3 in the tail transmission spectrum of a disintegrating planet located within 100 pc from the Earth with a transit depth deeper than 0.5%. SPICA can distinguish between Fe- and Mg-bearing crystalline silicates for planets at $\lesssim$ 100 pc with a transit depth of $\gtrsim$ 2%. Transit searches with current and future space telescopes (e.g., $TESS$ and PLATO) will provide ideal targets for such spectroscopic observations.