论文标题

共享MF:隐私的推荐系统

Shared MF: A privacy-preserving recommendation system

论文作者

Ying, Senci

论文摘要

基质分解是推荐系统中最常用的技术之一。随着电子商务购物,在线视频和其他方面的推广系统的促进,分布式推荐系统得到了广泛的促进,并且多源数据的隐私问题变得越来越重要。基于联合学习技术,本文提出了一种称为共享的矩阵分解方案,称为sharedMF。首先,建立了分布式建议系统,然后使用秘密共享技术来保护本地数据的隐私。实验结果表明,与现有的同型加密方法相比,我们的方法可以更快地执行速度而无需隐私披露,并且可以更好地适应具有大量数据的建议方案。

Matrix factorization is one of the most commonly used technologies in recommendation system. With the promotion of recommendation system in e-commerce shopping, online video and other aspects, distributed recommendation system has been widely promoted, and the privacy problem of multi-source data becomes more and more important. Based on Federated learning technology, this paper proposes a shared matrix factorization scheme called SharedMF. Firstly, a distributed recommendation system is built, and then secret sharing technology is used to protect the privacy of local data. Experimental results show that compared with the existing homomorphic encryption methods, our method can have faster execution speed without privacy disclosure, and can better adapt to recommendation scenarios with large amount of data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源