论文标题
苏打:具有软数据关联的多对象跟踪
SoDA: Multi-Object Tracking with Soft Data Association
论文作者
论文摘要
强大的多对象跟踪(MOT)是自动驾驶汽车安全部署的先决条件。但是,跟踪对象仍然是一个高度挑战性的问题,尤其是在杂乱无章的自主驾驶场景中,在这些场景中,对象倾向于以复杂的方式相互交互并经常被阻塞。我们提出了一种新的MOT方法,该方法使用注意力来计算轨道嵌入,该轨道嵌入了观察到的对象之间的时空依赖性。这种注意测量编码使我们的模型可以放松硬数据关联,这可能导致无法恢复的错误。相反,我们的模型通过软数据关联从所有对象检测中汇总了信息。由此产生的潜在空间表示使我们的模型可以学习以整体数据驱动的方式来推理闭塞,并维护对象的轨道估计,即使它们被封闭。我们在Waymo OpendataSet上的实验结果表明,我们的方法利用了现代的大规模数据集,并且与视觉多对象跟踪中的最新技术相比表现出色。
Robust multi-object tracking (MOT) is a prerequisite fora safe deployment of self-driving cars. Tracking objects, however, remains a highly challenging problem, especially in cluttered autonomous driving scenes in which objects tend to interact with each other in complex ways and frequently get occluded. We propose a novel approach to MOT that uses attention to compute track embeddings that encode the spatiotemporal dependencies between observed objects. This attention measurement encoding allows our model to relax hard data associations, which may lead to unrecoverable errors. Instead, our model aggregates information from all object detections via soft data associations. The resulting latent space representation allows our model to learn to reason about occlusions in a holistic data-driven way and maintain track estimates for objects even when they are occluded. Our experimental results on the Waymo OpenDataset suggest that our approach leverages modern large-scale datasets and performs favorably compared to the state of the art in visual multi-object tracking.