论文标题
在半题中心的通勤图上
On The Commuting Graph of Semidihedral Group
论文作者
论文摘要
有限的非阿布尔集团$ g $的通勤图$δ(g)$是一个简单的图形,带有顶点套装$ g $,如果$ xy = yx $,则两个不同的顶点$ x,y $相邻。在本文中,在$δ(g)$的某些属性中,我们研究了$δ(sd_ {8n})$ semidiheDral group $ sd_ {8n} $的通勤图。在这方面,我们讨论了$δ(sd_ {8n})$的各种图形不变性,包括最低度,顶点连接,独立数,匹配数和弯路属性。我们还获得了$δ(SD_ {8n})$的Laplacian光谱,度量尺寸和解决多项式。
The commuting graph $Δ(G)$ of a finite non-abelian group $G$ is a simple graph with vertex set $G$ and two distinct vertices $x, y$ are adjacent if $xy = yx$. In this paper, among some properties of $Δ(G)$, we investigate $Δ(SD_{8n})$ the commuting graph of the semidihedral group $SD_{8n}$. In this connection, we discuss various graph invariants of $Δ(SD_{8n})$ including minimum degree, vertex connectivity, independence number, matching number and detour properties. We also obtain the Laplacian spectrum, metric dimension and resolving polynomial of $Δ(SD_{8n})$.