论文标题
$ l^p([0,1])$的窄操作员的估计
An estimate for narrow operators on $L^p([0, 1])$
论文作者
论文摘要
我们证明了一个定理,该定理将C. Franchetti对投影的规范的估算概述估计到$ l^p([0,1])$的丰富子空间,以及作者对紧凑型操作员的相关估算值,$ l^p([0,1])$,$ 1 \ le le p <\ p <\ f <\ f <\ fyfty $。
We prove a theorem, which generalises C. Franchetti's estimate for the norm of a projection onto a rich subspace of $L^p([0, 1])$ and the authors' related estimate for compact operators on $L^p([0, 1])$, $1 \le p < \infty$.