论文标题

神经射线表面,用于自我监督的深度和自我学习

Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-motion

论文作者

Vasiljevic, Igor, Guizilini, Vitor, Ambrus, Rares, Pillai, Sudeep, Burgard, Wolfram, Shakhnarovich, Greg, Gaidon, Adrien

论文摘要

自我监督的学习已成为深度和自我运动估计的强大工具,从而在基准数据集中取得了最新的结果。但是,当前方法共享的一个重要局限性是假设已知参数摄像机模型(通常是标准针孔几何形状),从而导致将其应用于显着偏离此假设的成像系统(例如,catadioptric摄像机或水下成像)。在这项工作中,我们表明,自我划定可用于学习准确的深度和自我运动估计,而无需事先了解摄像机模型。受Grossberg和Nayar的几何模型的启发,我们引入了神经射线表面(NRS),卷积网络表示代表像素的投影射线,近似于相机。 NR是完全可区分的,可以从未标记的原始视频端到端学习。我们证明了使用NRS从使用各种摄像机系统(包括针孔,Fisheye和Catadioptric)获得的原始视频中的视觉探视和深度估计的自我监督学习。

Self-supervised learning has emerged as a powerful tool for depth and ego-motion estimation, leading to state-of-the-art results on benchmark datasets. However, one significant limitation shared by current methods is the assumption of a known parametric camera model -- usually the standard pinhole geometry -- leading to failure when applied to imaging systems that deviate significantly from this assumption (e.g., catadioptric cameras or underwater imaging). In this work, we show that self-supervision can be used to learn accurate depth and ego-motion estimation without prior knowledge of the camera model. Inspired by the geometric model of Grossberg and Nayar, we introduce Neural Ray Surfaces (NRS), convolutional networks that represent pixel-wise projection rays, approximating a wide range of cameras. NRS are fully differentiable and can be learned end-to-end from unlabeled raw videos. We demonstrate the use of NRS for self-supervised learning of visual odometry and depth estimation from raw videos obtained using a wide variety of camera systems, including pinhole, fisheye, and catadioptric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源