论文标题
随时间不断发展的矩阵产品运营商的量子热统计数据
Quantum heat statistics with time-evolving matrix product operators
论文作者
论文摘要
我们提出了一种数值精确的方法,用于计算非马克维亚开放量子系统中热传递的完整计数统计,该量子系统基于时间不断变化的矩阵产品运算符(TEMPO)算法。该方法应用于范式旋转玻色子模型,以计算热平衡期间传递到环境的热量和波动。我们表明,系统储存的相关性为低温下的热统计量做出了重大贡献,并提出了一种定量解释我们的数值结果的变分理论。我们还展示了连接高温下热分布的平均值和方差的波动散落关系。我们的结果表明,即使开放系统的动态实际上是马尔可夫人的,系统托管相互作用也为传热做出了重大贡献。此处介绍的方法提供了一种灵活而通用的工具,可以预测非扰动制度中开放量子系统中传热的波动。
We present a numerically exact method to compute the full counting statistics of heat transfer in non-Markovian open quantum systems, which is based on the time-evolving matrix product operator (TEMPO) algorithm. This approach is applied to the paradigmatic spin-boson model in order to calculate the mean and fluctuations of the heat transferred to the environment during thermal equilibration. We show that system-reservoir correlations make a significant contribution to the heat statistics at low temperature and present a variational theory that quantitatively explains our numerical results. We also demonstrate a fluctuation-dissipation relation connecting the mean and variance of the heat distribution at high temperature. Our results reveal that system-bath interactions make a significant contribution to heat transfer even when the dynamics of the open system is effectively Markovian. The method presented here provides a flexible and general tool to predict the fluctuations of heat transfer in open quantum systems in non-perturbative regimes.