论文标题

多模式病理学分割框架:应用于心脏磁共振图像

Multi-Modality Pathology Segmentation Framework: Application to Cardiac Magnetic Resonance Images

论文作者

Zhang, Zhen, Liu, Chenyu, Ding, Wangbin, Wang, Sihan, Pei, Chenhao, Yang, Mingjing, Huang, Liqin

论文摘要

心脏磁共振(CMR)图像的多序列可以为心肌病理(疤痕和水肿)提供互补信息。但是,将这些基本信息融合有效地融合这些基本信息仍然具有挑战性。这项工作提出了基于多模式CMR图像的自动级联病理分割框架。它主要由两个神经网络组成:一个解剖结构分割网络(ASSN)和病理区域分割网络(PRSN)。具体而言,ASSN旨在分割可能存在病理的解剖结构,并且可以为病理区域分割提供空间。此外,我们将denoising自动编码器(DAE)集成到Assn中,以通过合理的形状产生分割结果。 PRSN旨在基于ASSN的结果来段性区域,其中提出了基于通道注意的融合块,以从多模式CMR图像中更好地汇总多模式信息。 Myops2020挑战数据集的实验表明,我们的框架可以实现心肌疤痕和水肿细分的有希望的性能。

Multi-sequence of cardiac magnetic resonance (CMR) images can provide complementary information for myocardial pathology (scar and edema). However, it is still challenging to fuse these underlying information for pathology segmentation effectively. This work presents an automatic cascade pathology segmentation framework based on multi-modality CMR images. It mainly consists of two neural networks: an anatomical structure segmentation network (ASSN) and a pathological region segmentation network (PRSN). Specifically, the ASSN aims to segment the anatomical structure where the pathology may exist, and it can provide a spatial prior for the pathological region segmentation. In addition, we integrate a denoising auto-encoder (DAE) into the ASSN to generate segmentation results with plausible shapes. The PRSN is designed to segment pathological region based on the result of ASSN, in which a fusion block based on channel attention is proposed to better aggregate multi-modality information from multi-modality CMR images. Experiments from the MyoPS2020 challenge dataset show that our framework can achieve promising performance for myocardial scar and edema segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源