论文标题
一种计算2D ISING通用性转换点的新方法:Ashkin-Teller多智力点附近的应用
A new method to calculate a 2d ising universality transition point : application near the ashkin-teller multicritical point
论文作者
论文摘要
我们提出了一种新方法,以计算属于量子自旋模型的2D ISING通用类别的过渡点。通常,在传统方法中,在多个临时点附近,有限的尺寸校正变得非常大。为了抑制多政治点的效果,我们使用Z轴扭曲的边界条件和Y轴扭曲的边界条件。我们将方法应用于s = 1/2邦德 - altertanting xxz模型。该模型的多政治点具有BKT转换,其中相关长度差异很大。但是,通过我们的方法,计算的收敛性得到了高度改进,因此我们甚至可以在多智力点附近计算过渡点。
We propose a new method to numerically calculate transition points that belongs to 2D Ising universality class for quantum spin models. Generally, near the multicritical point, in conventional methods, a finite size correction becomes very large. To suppress the effect of the multicritical point, we use a z-axis twisted boundary condition and a y-axis twisted boundary condition. We apply our method to an S = 1/2 bond-alternating XXZ model. The multicritical point of this model has a BKT transition, where the correlation length diverges singularly. However, with our method, the convergence of calculation is highly improved, thus we can calculate the transition point even near the multicritical point.