论文标题
关于在四维谎言组上的剩余para-kähler结构的分类
On the classification of left-invariant para-Kähler structures on four-dimensional Lie groups
论文作者
论文摘要
D. calvaruzo于2015年获得了四维谎言代数的para-kähller结构的第一个分类。在本文中,我们提出了基于符号lie代数分类的另一种分类。对于每个四维符合性谎言代数,兼容的para复合结构和相应的伪里人指标都以显式形式找到。这导致在五维触点上与非平凡中心的五维触点结构分类。
A first classification of para-Kähler structures on four-dimensional Lie algebras was obtained by D. Calvaruzo in 2015. In this paper, we propose another classification based on the classification of symplectic Lie algebras. For each four-dimensional symplectic Lie algebra, compatible para-complex structures and the corresponding pseudo-Riemannian metrics are found in explicit form. This leads to the classification of Sasaki para-contact structures on five-dimensional contact Lie algebras with a nontrivial center.