论文标题

用于强大识别复杂非线性动力学系统的机器学习:地球系统建模的应用

Machine Learning for Robust Identification of Complex Nonlinear Dynamical Systems: Applications to Earth Systems Modeling

论文作者

Yadav, Nishant, Ravela, Sai, Ganguly, Auroop R.

论文摘要

表现出非线性动态的系统,包括但不限于混乱,在地球科学(例如气象,水文学,气候和生态学)以及神经和心脏过程等生物学等地球科学中无处不在。但是,系统识别仍然是一个挑战。在气候和地球系统模型中,虽然管理方程式遵循的第一原则和对关键过程的理解稳步改善,但最大的不确定性通常是由诸如云物理等参数化引起的,而云物理又是在过去的几十年中见证了有限的改进。气候科学家指出,机器学习增强了参数估计作为可能的解决方案,并在理想化的系统上检查了概念概念的方法学适应。尽管由于存档模拟的数量和复杂性和远程和原位传感器的观测值的数量和复杂性,气候科学被强调为“大数据”挑战,但参数估计过程通常是相对的“小数据”问题。在这种情况下,对于数据科学家来说,一个至关重要的问题是最先进的数据驱动方法的相关性,包括基于深度神经网络或基于内核过程的方法。在这里,我们考虑了一种混沌系统 - 两级洛伦兹-96-用作气候科学文献中的基准模型,它采用了一种基于高斯过程的方法来进行参数估计,并将预测理解中的增长与深度学习和稻草人线性回归方法进行比较。我们的结果表明,基于内核的高斯过程的适应可以在小数据约束下胜过其他方法以及不确定性量化。并且需要被视为气候科学和地球系统建模中的可行方法。

Systems exhibiting nonlinear dynamics, including but not limited to chaos, are ubiquitous across Earth Sciences such as Meteorology, Hydrology, Climate and Ecology, as well as Biology such as neural and cardiac processes. However, System Identification remains a challenge. In climate and earth systems models, while governing equations follow from first principles and understanding of key processes has steadily improved, the largest uncertainties are often caused by parameterizations such as cloud physics, which in turn have witnessed limited improvements over the last several decades. Climate scientists have pointed to Machine Learning enhanced parameter estimation as a possible solution, with proof-of-concept methodological adaptations being examined on idealized systems. While climate science has been highlighted as a "Big Data" challenge owing to the volume and complexity of archived model-simulations and observations from remote and in-situ sensors, the parameter estimation process is often relatively a "small data" problem. A crucial question for data scientists in this context is the relevance of state-of-the-art data-driven approaches including those based on deep neural networks or kernel-based processes. Here we consider a chaotic system - two-level Lorenz-96 - used as a benchmark model in the climate science literature, adopt a methodology based on Gaussian Processes for parameter estimation and compare the gains in predictive understanding with a suite of Deep Learning and strawman Linear Regression methods. Our results show that adaptations of kernel-based Gaussian Processes can outperform other approaches under small data constraints along with uncertainty quantification; and needs to be considered as a viable approach in climate science and earth system modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源