论文标题
用于确定加权基因组重排距离的路径信息框架
A path-deformation framework for determining weighted genome rearrangement distance
论文作者
论文摘要
通常通过假设所有反转发生以均等的概率来测量两个细菌基因组之间的距离。最近,引入了一种使用组理论来计算反转距离的方法,对于仅发生非常短的反转模型而言,有效。在本文中,我们展示了如何使用群体理论框架来建立在一组倒置上的任何权重的最小距离,从而概括了先前的方法。为此,我们将重写系统的理论用于组,并利用Knuth-Bendix算法,首次将该理论引入基因组重排问题。 该方法的核心思想是使用现有的组理论方法在基因组空间中的两个基因组之间找到一个初始路径(例如,仅使用短反转),然后使用Knuth-Bendix算法生成的汇合重写规则的汇合系统变形了最优性。
Measuring the distance between two bacterial genomes under the inversion process is usually done by assuming all inversions to occur with equal probability. Recently, an approach to calculating inversion distance using group theory was introduced, and is effective for the model in which only very short inversions occur. In this paper, we show how to use the group-theoretic framework to establish minimal distance for any weighting on the set of inversions, generalizing previous approaches. To do this we use the theory of rewriting systems for groups, and exploit the Knuth--Bendix algorithm, the first time this theory has been introduced into genome rearrangement problems. The central idea of the approach is to use existing group theoretic methods to find an initial path between two genomes in genome space (for instance using only short inversions), and then to deform this path to optimality using a confluent system of rewriting rules generated by the Knuth--Bendix algorithm.