论文标题
带有近期设备的开放系统的不连贯量子算法动力学
Incoherent quantum algorithm dynamics of an open system with near-term devices
论文作者
论文摘要
混合量子古典算法是在嘈杂的中等规模量子(NISQ)技术下实施量子计算的最有前途的系统之一。在本文中,首先,我们研究了使用有效的基于拉格朗日的方法来遵守von Neumann方程的密度矩阵的量子动力学算法。然后,我们考虑了由杂种量子古典算法描述的无序量子系统的合奏平均动力学。在最近的工作中[物理学。莱特牧师。 120,030403],作者得出的结论是,由于疾病的平均水平的性质,可以通过汉密尔顿合奏模拟开放系统的动力学。我们研究了使用主方程式形式的有效变分量子电路来模拟开放系统的不相干动力学(脱干)的算法。尽管开放系统的发展是非自动演变的,但我们的方法适用于与统一量子操作的不一致动态的广泛问题。
Hybrid quantum-classical algorithms are among the most promising systems to implement quantum computing under the Noisy-Intermediate Scale Quantum (NISQ) technology. In this paper, at first, we investigate a quantum dynamics algorithm for the density matrix obeying the von Neumann equation using an efficient Lagrangian-based approach. And then, we consider the dynamics of the ensemble-averaged of disordered quantum systems which is described by Hamiltonian ensemble with a hybrid quantum-classical algorithm. In a recent work [Phys. Rev. Lett. 120, 030403], the authors concluded that the dynamics of an open system could be simulated by a Hamiltonian ensemble because of nature of the disorder average. We investigate our algorithm to simulating incoherent dynamics (decoherence) of open system using an efficient variational quantum circuit in the form of master equations. Despite the non-unitary evolution of open systems, our method is applicable to a wide range of problems for incoherent dynamics with the unitary quantum operation.