论文标题
严格的NEF除数和关于Serrano的猜想的一些言论
Strictly nef divisors and some remarks on a conjecture of Serrano
论文作者
论文摘要
Serrrano的猜想说,如果$ L $是一个严格的Nef线条捆绑包,则在光滑的投影品种$ x $上,那么$ k_x+tl $对于$ t> dim x+1 $来说是足够的。在本文中,我将证明一些猜想的情况。我还将证明该猜想的广义版(由于Campana,Chen和Peternell)的表面。在最后一节中,假设SHGH猜想,我将在arbitary Kodaira维度表面上举一个严格的NEF非足够除数的例子。
Serrrano's Conjecture says that if $L$ is a strictly nef line bundle on a smooth projective variety $X$, then $K_X+tL$ is ample for $ t > dim X+1$. In this paper I will prove a few cases of this conjecture. I will also prove a generalized version of this conjecture (due to Campana, Chen and Peternell) for surfaces. In the last section, assuming the SHGH conjecture, I will give a series of examples of strictly nef non ample divisors on surfaces of arbitary Kodaira dimension.