论文标题
视觉模仿变得容易
Visual Imitation Made Easy
论文作者
论文摘要
视觉模仿学习通过利用人类的示范来学习复杂的操纵行为的框架。但是,当前的模仿界面(例如动力学教学或远距离)极大地限制了我们在野外有效收集大规模数据的能力。获得如此多样化的演示数据对于将学术技能推广到新场景至关重要。在这项工作中,我们提出了模仿的替代接口,可以简化数据收集过程,同时允许轻松传输到机器人。我们将商业可用的GRABBER辅助工具用作数据收集设备和机器人的最终效果。为了从这些视觉演示中提取动作信息,除了训练手指检测网络外,我们还使用运动(SFM)技术的现成结构。我们对两项具有挑战性的任务进行实验评估:非划出推动和固定前堆积,每项任务都有1000种不同的演示。对于这两个任务,我们都使用标准行为克隆从先前收集的离线演示中学习可执行策略。为了提高学习绩效,我们采用了各种数据增强,并对其效果进行了广泛的分析。最后,我们通过评估以前看不见的对象的实际机器人方案来证明界面的实用性,并在推动方面取得了87%的成功率,并在堆叠方面取得了62%的成功率。机器人视频可在https://dhiraj100892.github.io/visual-imitation-made-made-easy上找到。
Visual imitation learning provides a framework for learning complex manipulation behaviors by leveraging human demonstrations. However, current interfaces for imitation such as kinesthetic teaching or teleoperation prohibitively restrict our ability to efficiently collect large-scale data in the wild. Obtaining such diverse demonstration data is paramount for the generalization of learned skills to novel scenarios. In this work, we present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots. We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector. To extract action information from these visual demonstrations, we use off-the-shelf Structure from Motion (SfM) techniques in addition to training a finger detection network. We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task. For both tasks, we use standard behavior cloning to learn executable policies from the previously collected offline demonstrations. To improve learning performance, we employ a variety of data augmentations and provide an extensive analysis of its effects. Finally, we demonstrate the utility of our interface by evaluating on real robotic scenarios with previously unseen objects and achieve a 87% success rate on pushing and a 62% success rate on stacking. Robot videos are available at https://dhiraj100892.github.io/Visual-Imitation-Made-Easy.