论文标题
流行病的形状:使用功能数据分析来表征意大利的Covid-19
The shapes of an epidemic: using Functional Data Analysis to characterize COVID-19 in Italy
论文作者
论文摘要
我们研究了20个意大利地区的Covid-19死亡率的模式及其与流动性,积极性以及社会人口统计学,基础设施和环境协变量的关联。尽管在公共资源可获得的数据准确性和解决方案方面存在限制,但我们还是指出了具有功能数据分析技术的曲线和形状中利用信息的重要趋势。这些描述了两个截然不同的流行病。一个“指数”在伦巴第迪亚(Lombardia)和北部最严重的地区展开的“指数”,一个更温和的“平地(Tented)”在全国其他地区 - 包括威尼托(Veneto),其中案件与伦巴第迪亚(Lombardia)同时出现,但很早就实施了积极的测试。我们发现,在控制相关的协变量时,流动性和积极性也可以预测COVID-19的死亡率。在后者中,初级保健似乎可以减轻死亡率,以及医院,学校和工作场所的联系,以加重其。如果应用于更丰富的数据,我们描述的技术可能会捕获其他且可能更尖锐的信号。
We investigate patterns of COVID-19 mortality across 20 Italian regions and their association with mobility, positivity, and socio-demographic, infrastructural and environmental covariates. Notwithstanding limitations in accuracy and resolution of the data available from public sources, we pinpoint significant trends exploiting information in curves and shapes with Functional Data Analysis techniques. These depict two starkly different epidemics; an "exponential" one unfolding in Lombardia and the worst hit areas of the north, and a milder, "flat(tened)" one in the rest of the country -- including Veneto, where cases appeared concurrently with Lombardia but aggressive testing was implemented early on. We find that mobility and positivity can predict COVID-19 mortality, also when controlling for relevant covariates. Among the latter, primary care appears to mitigate mortality, and contacts in hospitals, schools and work places to aggravate it. The techniques we describe could capture additional and potentially sharper signals if applied to richer data.