论文标题

有机半导体之间电子耦合的直接观察和演变

Direct observation and evolution of electronic coupling between organic semiconductors

论文作者

Kesava, Sameer Vajjala, Riede, Moritz K.

论文摘要

原子或分子的电子波函数受其与环境相互作用的影响。这些相互作用决定了界面的电子和光学过程,并且在薄膜光电设备(例如有机太阳能电池)的情况下尤其重要。在这些设备中,电荷传输和多层之间的接口沿厚度或垂直方向出现,因此这种电子相互作用对于确定设备性能至关重要。在这里,我们介绍了一种新的原位光谱椭圆分析方法,称为DART,具有直接探测电子耦合的能力,该方法是通过使用真空的有机有机半导体薄膜沿厚度方向沿厚度方向进行的,作为模型系统。该分析不需要任何模型拟合,它揭示了在光激励下直接观察到边界轨道之间的电子耦合,从而导致对相应的电子波函数的离域,或者等效地,分子数量与C60和Meo-tpd沉积的分子数量(Sio2)(Sio2)。分析应用于沉积在邻苯二甲酰胺薄膜上的C60相同的方法,显示出强,异常特征 - 与在SIO2上沉积的C60相比,对对应于C60和苯甲烷中的特定激发能的电子波浪函数。这种相互作用在介电常数方面的翻译揭示了由于界面上两种材料之间激发态波碰撞的振荡而产生的等离激元型共振吸收。最后,该方法的可重复性,埃静电级的灵敏度和简单性强调了其用于研究任何蒸气沉积物质系统之间的电子耦合的适用性,在这些蒸气沉积的材料系统之间,在沉积过程中实时测量是可能的。

The electronic wavefunctions of an atom or molecule are affected by its interactions with its environment. These interactions dictate electronic and optical processes at interfaces, and is especially relevant in the case of thin film optoelectronic devices such as organic solar cells. In these devices, charge transport and interfaces between multiple layers occur along the thickness or vertical direction, and thus such electronic interactions are crucial in determining the device properties. Here, we introduce a new in-situ spectroscopic ellipsometry data analysis method called DART with the ability to directly probe electronic coupling due to intermolecular interactions along the thickness direction using vacuum-deposited organic semiconductor thin films as a model system. The analysis, which does not require any model fitting, reveals direct observations of electronic coupling between frontier orbitals under optical excitations leading to delocalization of the corresponding electronic wavefunctions with thickness or, equivalently, number of molecules away from the interface in C60 and MeO-TPD deposited on an insulating substrate (SiO2). Applying the same methodology for C60 deposited on phthalocyanine thin films, the analyses shows strong, anomalous features - in comparison to C60 deposited on SiO2 - of the electronic wavefunctions corresponding to specific excitation energies in C60 and phthalocyanines. Translation of such interactions in terms of dielectric constants reveals plasmonic type resonance absorptions resulting from oscillations of the excited state wavefunctions between the two materials across the interface. Finally, reproducibility, angstrom-level sensitivity and simplicity of the method are highlighted showcasing its applicability for studying electronic coupling between any vapor-deposited material systems where real-time measurements during deposition are possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源