论文标题

使用空间数据的非参数预测

Nonparametric prediction with spatial data

论文作者

Gupta, Abhimanyu, Hidalgo, Javier

论文摘要

我们基于光谱密度函数的规范分解,描述了用于空间数据的(非参数)预测算法。我们提供了理论上的结果,表明预测变量具有理想的渐近性质。在一项蒙特卡洛研究中评估了有限样本性能,该研究还将我们的算法与基于数据动力学的无限AR表示,将我们的算法与竞争对手的非参数方法进行了比较。最后,我们运用我们的方法来预测洛杉矶的房价。

We describe a (nonparametric) prediction algorithm for spatial data, based on a canonical factorization of the spectral density function. We provide theoretical results showing that the predictor has desirable asymptotic properties. Finite sample performance is assessed in a Monte Carlo study that also compares our algorithm to a rival nonparametric method based on the infinite AR representation of the dynamics of the data. Finally, we apply our methodology to predict house prices in Los Angeles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源