论文标题

在均匀凸出双曲线空间中构造渐近的非专用映射的固定点

Construction of fixed points of asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces

论文作者

Sipos, Andrei

论文摘要

Kohlenbach和Leustean在2010年表明,对有限的非空的$ UCW $ -YPERBOLIC SPACE的任何渐近无用的自我映射都具有固定点。在本文中,我们适应了由于Moloney引起的结构,以提供一个序列,该序列强烈收敛到这样的固定点。

Kohlenbach and Leustean have shown in 2010 that any asymptotically nonexpansive self-mapping of a bounded nonempty $UCW$-hyperbolic space has a fixed point. In this paper, we adapt a construction due to Moloney in order to provide a sequence that converges strongly to such a fixed point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源