论文标题
用于大摩门有效理论的准轻偏相关的混合重新归一化方案
A Hybrid Renormalization Scheme for Quasi Light-Front Correlations in Large-Momentum Effective Theory
论文作者
论文摘要
在大型摩肌有效理论(lamet)中,计算parton物理学从计算坐标空间 - $ z $相关函数$ \ tilde h(z,a,p^z)$在lattice qcd中的动量$ p^z $中。这种相关函数涉及晶格间距$ a $的线性和对数差异,因此需要正确重新归一化。我们引入了一个混合重新归一化过程,以将这些晶格相关性与连续$ \ operline {\ rm MS} $方案相匹配,而无需在大$ z $上引入额外的非扰动效果。我们分析了$ {\ cal o}(λ_ {\ rm qcd})$歧义在此混合方案中涉及的Wilson Line自能量减法中。为了获得动量空间分布,我们建议分别使用中等和大型$ p^z $的坐标空间相关性的通用属性将晶格数据推送到渐近$ z $ - 地区。
In large-momentum effective theory (LaMET), calculating parton physics starts from calculating coordinate-space-$z$ correlation functions $\tilde h(z, a,P^z)$ in a hadron of momentum $P^z$ in lattice QCD. Such correlation functions involve both linear and logarithmic divergences in lattice spacing $a$, and thus need to be properly renormalized. We introduce a hybrid renormalization procedure to match these lattice correlations to those in the continuum $\overline{\rm MS}$ scheme, without introducing extra non-perturbative effects at large $z$. We analyze the effect of ${\cal O}(Λ_{\rm QCD})$ ambiguity in the Wilson line self-energy subtraction involved in this hybrid scheme. To obtain the momentum-space distributions, we recommend to extrapolate the lattice data to the asymptotic $z$-region using the generic properties of the coordinate space correlations at moderate and large $P^z$, respectively.