论文标题

胶合图及其雅各布人

Gluing of graphs and their Jacobians

论文作者

Chilelli, Alessandro, Jun, Jaiung

论文摘要

图的雅各布是黎曼表面的雅各布的离散类似物。在本文中,我们探讨了雅各布人在沿着循环图的情况下的常见子图胶胶粘合两个图时如何变化。然后,我们将雅各布人的图表计算与循环矩阵联系起来。最后,我们证明了Tutte的转子构造,他的原始示例在所有涉及的图形都是平面时,用同构雅可比人产生了两个图形。这回答了克兰西,莱克和佩恩提出的问题,并指出在这种情况下这是肯定的。

The Jacobian of a graph is a discrete analogue of the Jacobian of a Riemann surface. In this paper, we explore how Jacobians of graphs change when we glue two graphs along a common subgraph focusing on the case of cycle graphs. Then, we link the computation of Jacobians of graphs with cycle matrices. Finally, we prove that Tutte's rotor construction with his original example produces two graphs with isomorphic Jacobians when all involved graphs are planar. This answers the question posed by Clancy, Leake, and Payne, stating it is affirmative in this case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源