论文标题

在线NASH社会福利最大化和预测

Online Nash Social Welfare Maximization with Predictions

论文作者

Banerjee, Siddhartha, Gkatzelis, Vasilis, Gorokh, Artur, Jin, Billy

论文摘要

我们考虑以在线方式将一组可分割商品分配给$ n $代理的问题,旨在最大化纳什社会福利,这是一个广泛研究的目标,在公平和效率之间提供平衡。货物以$ t $时期的顺序到达,而在良好到达时,会选择每个代理商的商品价值。我们首先观察到,除非给出有关代理商价值的其他信息,否则没有在线算法可以比微不足道的$ o(n)$获得更好的竞争比率。 然后,根据“预测算法”的新兴领域,我们考虑一个设置,对于每个代理,在线算法仅预测了她的垄断效用,即,如果单独给予她的所有商品(对应于$ t $ the $ t $ the $ t $的价值,则她的效用)。我们的主要结果是一种在线算法,其竞争比率是通过这些预测中的乘法错误参数化的。如果预测完全准确,该算法的竞争比率为$ O(\ log n)$和$ O(\ log t)$。此外,竞争比随预测的错误而平稳地降低,并且令人惊讶的是:即使预测非常不准确,对数竞争比也成立。我们通过证明我们的界限本​​质上很紧张来补充这一积极的结果:即使提供了完全准确的预测,也没有在线算法,即使有$ O(\ log^{1-ε} n)$或$ O(\ log^{1-ε} n)$或$ O(\ log^{1-am} T)$的竞争比率。

We consider the problem of allocating a set of divisible goods to $N$ agents in an online manner, aiming to maximize the Nash social welfare, a widely studied objective which provides a balance between fairness and efficiency. The goods arrive in a sequence of $T$ periods and the value of each agent for a good is adversarially chosen when the good arrives. We first observe that no online algorithm can achieve a competitive ratio better than the trivial $O(N)$, unless it is given additional information about the agents' values. Then, in line with the emerging area of "algorithms with predictions", we consider a setting where for each agent, the online algorithm is only given a prediction of her monopolist utility, i.e., her utility if all goods were given to her alone (corresponding to the sum of her values over the $T$ periods). Our main result is an online algorithm whose competitive ratio is parameterized by the multiplicative errors in these predictions. The algorithm achieves a competitive ratio of $O(\log N)$ and $O(\log T)$ if the predictions are perfectly accurate. Moreover, the competitive ratio degrades smoothly with the errors in the predictions, and is surprisingly robust: the logarithmic competitive ratio holds even if the predictions are very inaccurate. We complement this positive result by showing that our bounds are essentially tight: no online algorithm, even if provided with perfectly accurate predictions, can achieve a competitive ratio of $O(\log^{1-ε} N)$ or $O(\log^{1-ε} T)$ for any constant $ε>0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源