论文标题
二截态代数的变形和Hochschild协同学
Deformation and Hochschild Cohomology of Coisotropic Algebras
论文作者
论文摘要
侧相代数由代数的三元组成,在这些代数中可以在多种情况下以非常代数的时尚坐共同体减少来定义和统一。在本文中,我们研究了(形式)均匀代数的(形式)变形的理论,该理论表明变形受合适的共截相DGLAS的控制。我们定义一个变形函子,并证明它会减少通勤。最后,我们研究了共同体代数的存在和独特性的障碍,并提出了一些几何例子。
Coisotropic algebras consist of triples of algebras for which a reduction can be defined and unify in a very algebraic fashion coisotropic reduction in several settings. In this paper we study the theory of (formal) deformation of coisotropic algebras showing that deformations are governed by suitable coisotropic DGLAs. We define a deformation functor and prove that it commutes with reduction. Finally, we study the obstructions to existence and uniqueness of coisotropic algebras and present some geometric examples.