论文标题
自动学习事件快速分类(Alerce)警报经纪人
The Automatic Learning for the Rapid Classification of Events (ALeRCE) Alert Broker
论文作者
论文摘要
我们介绍了快速的事件(Alerce)经纪人的自动学习,这是一家天文学警报经纪人,旨在提供大型望远镜警报流的快速和自愿分类,例如Zwicky Transient设施(ZTF)提供的,将来,Vera C. C. C. Rabin C. Rabin ofvoration ofvoration oblevation of Vera offeration obleveration of Space and Time(LSSSST)。 Alerce是由智利领导的经纪人,由跨学科的天文学家和工程师团队经营,努力成为调查和关注设施之间的中介机构。 Alerce使用的管道包括包括实时摄入,聚合,交叉匹配,机器学习(ML)分类以及ZTF警报流的可视化。我们使用两个分类器:一个基于邮票的分类器,设计用于快速分类的分类器,以及一个基于曲线的分类器,该分类器使用多频段通量演变来实现更精炼的分类。我们详细描述了我们的管道,数据产品,工具和服务,这些管道,工具和服务是为社区公开的(请参阅\ url {https://alerce.science})。自从我们开始在2019年初对ZTF警报流进行实时ML分类以来,我们在全球范围内建立了大量的活跃用户社区。我们描述了迄今为止的结果,包括$ 9.7 \ times10^7 $警报的实际处理,$ 1.9 \ times10^7 $对象的邮票分类,$ 8.5 \ times10^5 $对象的光曲线分类,3088 Supernova候选人的报告以及使用LSST类似警报的不同实验的报告。最后,我们讨论了从ZTF等警报的单个流到以LSST为主的多流生态系统的挑战。
We introduce the Automatic Learning for the Rapid Classification of Events (ALeRCE) broker, an astronomical alert broker designed to provide a rapid and self--consistent classification of large etendue telescope alert streams, such as that provided by the Zwicky Transient Facility (ZTF) and, in the future, the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). ALeRCE is a Chilean--led broker run by an interdisciplinary team of astronomers and engineers, working to become intermediaries between survey and follow--up facilities. ALeRCE uses a pipeline which includes the real--time ingestion, aggregation, cross--matching, machine learning (ML) classification, and visualization of the ZTF alert stream. We use two classifiers: a stamp--based classifier, designed for rapid classification, and a light--curve--based classifier, which uses the multi--band flux evolution to achieve a more refined classification. We describe in detail our pipeline, data products, tools and services, which are made public for the community (see \url{https://alerce.science}). Since we began operating our real--time ML classification of the ZTF alert stream in early 2019, we have grown a large community of active users around the globe. We describe our results to date, including the real--time processing of $9.7\times10^7$ alerts, the stamp classification of $1.9\times10^7$ objects, the light curve classification of $8.5\times10^5$ objects, the report of 3088 supernova candidates, and different experiments using LSST-like alert streams. Finally, we discuss the challenges ahead to go from a single-stream of alerts such as ZTF to a multi--stream ecosystem dominated by LSST.