论文标题

图像序数估计的卷积序数回归森林

Convolutional Ordinal Regression Forest for Image Ordinal Estimation

论文作者

Zhu, Haiping, Shan, Hongming, Zhang, Yuheng, Che, Lingfu, Xu, Xiaoyang, Zhang, Junping, Shi, Jianbo, Wang, Fei-Yue

论文摘要

图像序数估计是为了预测给定图像的序数标记,可以将其归类为序数回归问题。最近的方法将序数回归问题作为一系列二元分类问题。由于忽略了不同的二进制分类器之间的关系,因此无法确保保留全球序关系。我们提出了一种新型的序数回归方法,称为卷积序数回归森林或CORF,以进行图像序数估计,该方法可以将序数回归和可区分决策树与卷积神经网络相结合,以获得精确稳定的全球序物关系。拟议的CORF的优势是双重的。首先,所提出的方法没有学习一系列二进制分类器\ emph {独立},而是通过优化那些二进制分类器\ emph {同时}来学习序数回归的顺序分布。其次,可以以端到端的方式将所提出的CORF中的可区分决策树与序数分布一起训练。在两个图像序数估计任务,即面部年龄估计和图像美学评估上验证了所提出的CORF的有效性,显示出对最先进的序数回归方法的显着改善和更好的稳定性。

Image ordinal estimation is to predict the ordinal label of a given image, which can be categorized as an ordinal regression problem. Recent methods formulate an ordinal regression problem as a series of binary classification problems. Such methods cannot ensure that the global ordinal relationship is preserved since the relationships among different binary classifiers are neglected. We propose a novel ordinal regression approach, termed Convolutional Ordinal Regression Forest or CORF, for image ordinal estimation, which can integrate ordinal regression and differentiable decision trees with a convolutional neural network for obtaining precise and stable global ordinal relationships. The advantages of the proposed CORF are twofold. First, instead of learning a series of binary classifiers \emph{independently}, the proposed method aims at learning an ordinal distribution for ordinal regression by optimizing those binary classifiers \emph{simultaneously}. Second, the differentiable decision trees in the proposed CORF can be trained together with the ordinal distribution in an end-to-end manner. The effectiveness of the proposed CORF is verified on two image ordinal estimation tasks, i.e. facial age estimation and image aesthetic assessment, showing significant improvements and better stability over the state-of-the-art ordinal regression methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源