论文标题

预测图形设计类型之间的视觉重要性

Predicting Visual Importance Across Graphic Design Types

论文作者

Fosco, Camilo, Casser, Vincent, Bedi, Amish Kumar, O'Donovan, Peter, Hertzmann, Aaron, Bylinskii, Zoya

论文摘要

本文介绍了一个统一的显着性和重要性模型(UMSI),该模型学会了预测输入图形设计中的视觉重要性,并且自然图像中的显着性以及新的数据集和应用程序和应用程序。以前预测显着性或视觉重要性的方法是在专业数据集上单独培训的,使其在应用程序上有限,并导致对新型图像类别的概括不佳,同时要求用户知道将哪种模型应用于哪种输入。 UMSI是一个基于深度学习的模型,同时训练了来自不同设计类的图像,包括海报,信息图表,移动UI以及自然图像,并包括一个自动分类模块以对输入进行分类。这使模型可以更有效地工作,而无需用户标记输入。我们还介绍了Imp1k,这是一个注释的新设计数据集,其中包含重要性信息。我们演示了两个使用重要性预测的新设计接口,包括用于调整设计元素相对重要性的工具,以及将设计转换为新长宽比的工具,同时保持视觉重要性。模型,代码和重要性数据集可在https://predimportance.mit.edu上找到。

This paper introduces a Unified Model of Saliency and Importance (UMSI), which learns to predict visual importance in input graphic designs, and saliency in natural images, along with a new dataset and applications. Previous methods for predicting saliency or visual importance are trained individually on specialized datasets, making them limited in application and leading to poor generalization on novel image classes, while requiring a user to know which model to apply to which input. UMSI is a deep learning-based model simultaneously trained on images from different design classes, including posters, infographics, mobile UIs, as well as natural images, and includes an automatic classification module to classify the input. This allows the model to work more effectively without requiring a user to label the input. We also introduce Imp1k, a new dataset of designs annotated with importance information. We demonstrate two new design interfaces that use importance prediction, including a tool for adjusting the relative importance of design elements, and a tool for reflowing designs to new aspect ratios while preserving visual importance. The model, code, and importance dataset are available at https://predimportance.mit.edu .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源