论文标题
非线性浅水方程的一般初始价值问题:倾斜的海滩和海湾上的长浪奔跑
General Initial Value Problem for the Nonlinear Shallow Water Equations: Runup of Long Waves on Sloping Beaches and Bays
论文作者
论文摘要
我们制定了一种新的方法来解决利用著名的载体 - 格林斯潘转换的浅水波方程的初始价值问题[G.载体和H. Greenspan,J。FluidMech。 01,97(1957)]。我们使用泰勒系列近似值来处理转换空间中曲线上给出的初始条件相关的难度。这将较早的解决方案扩展到具有接近岸初始条件,较大初始速度以及更复杂的U形测深的波浪的波浪。并允许在更现实的2D设置中验证海啸波淹没模型。
We formulate a new approach to solving the initial value problem of the shallow water-wave equations utilizing the famous Carrier-Greenspan transformation [G. Carrier and H. Greenspan, J. Fluid Mech. 01, 97 (1957)]. We use a Taylor series approximation to deal with the difficulty associated with the initial conditions given on a curve in the transformed space. This extends earlier solutions to waves with near shore initial conditions, large initial velocities, and in more complex U-shaped bathymetries; and allows verification of tsunami wave inundation models in a more realistic 2-D setting.