论文标题
带有神经网络的喷气机中的次要顶点发现
Secondary Vertex Finding in Jets with Neural Networks
论文作者
论文摘要
喷气式分类是测量和在粒子菌落中寻找新物理的重要成分,次级顶点重建是构建强大的喷气分类器的关键中间步骤。我们使用神经网络来执行Jets内部的顶点查找以提高分类性能,重点是底部与魅力风味标记的分离。我们实施了一种新颖的通用设定模型,该模型考虑了从喷气机中的所有轨道中考虑信息,以确定轨道是否源自公共顶点。我们探索不同的性能指标,并找到我们在准确的次要顶点重建中胜过传统方法的方法。我们还发现,改进的顶点发现可以显着改善喷气分类性能。
Jet classification is an important ingredient in measurements and searches for new physics at particle coliders, and secondary vertex reconstruction is a key intermediate step in building powerful jet classifiers. We use a neural network to perform vertex finding inside jets in order to improve the classification performance, with a focus on separation of bottom vs. charm flavor tagging. We implement a novel, universal set-to-graph model, which takes into account information from all tracks in a jet to determine if pairs of tracks originated from a common vertex. We explore different performance metrics and find our method to outperform traditional approaches in accurate secondary vertex reconstruction. We also find that improved vertex finding leads to a significant improvement in jet classification performance.