论文标题

通过替代模型预测裂纹生长和疲劳寿命

Predicting Crack Growth and Fatigue Life with Surrogate Models

论文作者

Pfingstl, Simon, Rios, Jose Ignacio, Baier, Horst, Zimmermann, Markus

论文摘要

疲劳引起的损害仍然是结构系统中最不确定的故障之一。预后健康监测与替代模型一起可以帮助预测结构的疲劳寿命。本文演示了如何将来自先前观察到的裂纹演变的数据与当前观察到的结构的数据结合在一起,以预测裂纹生长和总疲劳寿命。我们显示了一个基于巴黎定律的基于物理学的模型的应用,以及四个数学替代模型:经常性的神经网络,高斯过程回归,k-neartivt邻居和支持向量回归。对于优惠券测试,我们可以预测失败的时间和置信区间的裂纹增长。此外,我们通过平均绝对误差,确定系数,对数似然性的平均值及其置信区间来比较所有提出的模型的性能。结果表明,最好的数学替代模型是高斯过程回归和复发性神经网络。此外,本文表明,数学替代模型倾向于具有保守的置信区间,而基于物理的模型表现出过于乐观的(太小)置信区间。

Fatigue-induced damage is still one of the most uncertain failures in structural systems. Prognostic health monitoring together with surrogate models can help to predict the fatigue life of a structure. This paper demonstrates how to combine data from previously observed crack evolutions with data from the currently observed structure in order to predict crack growth and the total fatigue life. We show the application of one physics-based model, which is based on Paris' law, and four mathematical surrogate models: recurrent neural networks, Gaussian process regression, k-nearest neighbors, and support vector regression. For a coupon test, we predict the time to failure and the crack growth with confidence intervals. Moreover, we compare the performance of all proposed models by the mean absolute error, coefficient of determination, mean of log-likelihood, and their confidence intervals. The results show that the best mathematical surrogate models are Gaussian process regression and recurrent neural networks. Furthermore, this paper shows that the mathematical surrogate models tend to have conservative confidence intervals, whereas the physics-based model exhibits overly optimistic (too small) confidence intervals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源