论文标题

强耦合方案中脆弱的拓扑和平坦的超导性

Fragile topology and flat-band superconductivity in the strong-coupling regime

论文作者

Peri, Valerio, Song, Zhida, Bernevig, B. Andrei, Huber, Sebastian D.

论文摘要

在平坦的频带中,超导性会导致令人惊讶的运输效应。超流体的“移动性”,以超流量$ d_s $的形式,并不是从频段的曲率中汲取的,而是纯粹的频带几何来源。在平均场描述中,非零的Chern数量或脆弱的拓扑设置为$ d_s $的下限,通过berezinskii-kosterlitz-无尽的机制,它可能解释了相对较高的超导向过渡温度,该温度相对较高,以魔法角扭曲的双层石化烯(MATBG)测量。对于脆弱的拓扑,与双层系统有关的脆弱拓扑,但对于有限温度和均值场近似之外的命运仍不清楚。在这里,我们使用数值精确的蒙特卡洛模拟来研究具有类似于MATBG的拓扑特性的平坦带中有吸引力的哈伯德模型。我们发现具有临界温度的超导相变,该温度与相互作用强度线性缩放。然后,我们研究了超导状态的鲁棒性,以添加可能会或可能不会使脆弱拓扑的琐碎带。我们的结果证实了拓扑结合的有效性超出了平均场状态,并进一步强调了易碎拓扑对于平流频段超导性的重要性。

In flat bands, superconductivity can lead to surprising transport effects. The superfluid "mobility", in the form of the superfluid weight $D_s$, does not draw from the curvature of the band but has a purely band-geometric origin. In a mean-field description, a non-zero Chern number or fragile topology sets a lower bound for $D_s$, which, via the Berezinskii-Kosterlitz-Thouless mechanism, might explain the relatively high superconducting transition temperature measured in magic-angle twisted bilayer graphene (MATBG). For fragile topology, relevant for the bilayer system, the fate of this bound for finite temperature and beyond the mean-field approximation remained, however, unclear. Here, we use numerically exact Monte Carlo simulations to study an attractive Hubbard model in flat bands with topological properties akin to those of MATBG. We find a superconducting phase transition with a critical temperature that scales linearly with the interaction strength. We then investigate the robustness of the superconducting state to the addition of trivial bands that may or may not trivialize the fragile topology. Our results substantiate the validity of the topological bound beyond the mean-field regime and further stress the importance of fragile topology for flat-band superconductivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源