论文标题
拓扑和对称性的随机量子临界点
Topological and symmetry-enriched random quantum critical points
论文作者
论文摘要
我们研究对称性如何富集强度量子临界点和相位,并导致与临界大量波动共存的强大拓扑边缘模式。这些是无间隙拓扑阶段的混乱类似物。使用真实空间和密度矩阵重新归一化组方法,我们分析了这种富含对称性的随机量子自旋链的边界和批量临界行为。我们发现了一类新的对称性的无限随机性固定点:虽然局部散装特性与常规的随机单线相位是无法区分的,但非局部可观察结果和边界临界行为受不同的重新分配组固定点控制。我们还说明了这种新的量子关键点如何在Floquet系统中自然出现。
We study how symmetry can enrich strong-randomness quantum critical points and phases, and lead to robust topological edge modes coexisting with critical bulk fluctuations. These are the disordered analogues of gapless topological phases. Using real-space and density matrix renormalization group approaches, we analyze the boundary and bulk critical behavior of such symmetry-enriched random quantum spin chains. We uncover a new class of symmetry-enriched infinite randomness fixed points: while local bulk properties are indistinguishable from conventional random singlet phases, nonlocal observables and boundary critical behavior are controlled by a different renormalization group fixed point. We also illustrate how such new quantum critical points emerge naturally in Floquet systems.