论文标题
Haldane在罐头模型中的公式:适度选择的情况
Haldane's formula in Cannings models: The case of moderately strong selection
论文作者
论文摘要
对于一类罐装模型,我们证明了haldane的公式,$π(s_n)\ sim \ frac {2s_n} {ρ^2} $,对于单个有益型号的固定概率是大人来说,以大种群大小$ n $的限制,在中等程度强的选择中,即$ s_n \ sim $ n^$ n^$ n^$ n^$ n^$ n^$ n^$ n^$ n^$ n^$ n^$ n^$ n^$ b}。在这里,$ s_n $是携带有益类型的个人的选择性优势,而$ρ^2 $是(渐近)后代差异。我们对繁殖机制的假设允许在固定阶段的早期阶段将有益等位基因的频率过程与略微临界的Galton-Watson过程耦合。
For a class of Cannings models we prove Haldane's formula, $π(s_N) \sim \frac{2s_N}{ρ^2}$, for the fixation probability of a single beneficial mutant in the limit of large population size $N$ and in the regime of moderately strong selection, i.e. for $s_N \sim N^{-b}$ and $0< b<1/2$. Here, $s_N$ is the selective advantage of an individual carrying the beneficial type, and $ρ^2$ is the (asymptotic) offspring variance. Our assumptions on the reproduction mechanism allow for a coupling of the beneficial allele's frequency process with slightly supercritical Galton-Watson processes in the early phase of fixation.