论文标题

在一致的流量限制下,强大的最低成本流问题

Robust Minimum Cost Flow Problem Under Consistent Flow Constraints

论文作者

Büsing, Christina, Koster, Arie M. C. A., Schmitz, Sabrina

论文摘要

在一致的流量约束(ROBMCF $ \ equiv $)下,可靠的最低成本流问题是最低成本流(MCF)问题的新扩展。在Robmcf $ \ equiv $问题中,我们考虑了不确定性的需求和供应。但是,对于所有需求实现,我们要求如果将其包含在预定的ARC集合中,则弧上的流量值必须相等。目的是找到满足同等流量需求的可行流,同时最大程度地减少所有需求实现的最大成本。 在一组离散方案的情况下,我们得出结构性结果,这些结果指出了具有积分能力的网络上多项式时间可溶剂可求解的MCF问题的差异。特别是,丹齐格(Dantzig)和富尔克森(Fulkerson)的整体流程定理不存在。因此,我们需要整个纸张中的整体流。我们表明,Robmcf $ \ equiv $问题是强烈的$ \ Mathcal {np} $ - 通过从$(3,b2)$ - SAT问题的减少来减少环形挖掘。此外,我们证明了Robmcf $ \ equiv $问题是$ \ Mathcal {np} $ - 在串联平行的挖掘方面很难通过提供基于动态程序的分区和伪多种算法的减少来进行系列平行的挖掘。最后,我们提出了一个有关串联平行挖掘的特殊情况,我们可以在多项式时间内解决ROBMCF $ \ equiv $问题。

The robust minimum cost flow problem under consistent flow constraints (RobMCF$\equiv$) is a new extension of the minimum cost flow (MCF) problem. In the RobMCF$\equiv$ problem, we consider demand and supply that are subject to uncertainty. For all demand realizations, however, we require that the flow value on an arc needs to be equal if it is included in the predetermined arc set given. The objective is to find feasible flows that satisfy the equal flow requirements while minimizing the maximum occurring cost among all demand realizations. In the case of a discrete set of scenarios, we derive structural results which point out the differences with the polynomial time solvable MCF problem on networks with integral capacities. In particular, the Integral Flow Theorem of Dantzig and Fulkerson does not hold. For this reason, we require integral flows in the entire paper. We show that the RobMCF$\equiv$ problem is strongly $\mathcal{NP}$-hard on acyclic digraphs by a reduction from the $(3,B2)$-Sat problem. Further, we demonstrate that the RobMCF$\equiv$ problem is weakly $\mathcal{NP}$-hard on series-parallel digraphs by providing a reduction from Partition and a pseudo-polynomial algorithm based on dynamic programming. Finally, we propose a special case on series-parallel digraphs for which we can solve the RobMCF$\equiv$ problem in polynomial time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源