论文标题

细分驱动的功能保护网格

Segmentation-Driven Feature-Preserving Mesh Denoising

论文作者

Wang, Weijia, Pan, Wei, Dai, Chaofan, Dazeley, Richard, Wei, Lei, Rolfe, Bernard, Lu, Xuequan

论文摘要

功能保护网格denoising在视觉媒体中受到了显着的关注,目的是从被噪声污染的高保真性,干净的网格形状中恢复。现有的脱氧方法通常为各向异性表面设计较小的重量,以及各向同性表面的较大权重,以保留网状形状上的尖锐特征,例如边缘或角落。但是,他们经常无视这样一个事实,即对各向异性表面的如此小的重量仍然对形状上的结果和细节保存结果构成负面影响。在本文中,我们提出了一种新型的分割驱动的网状denoising方法,该方法执行区域降解,从而避免了各向异性邻居面的干扰,以更好地保存结果。同样,我们的骨干可以很容易地嵌入常用的网格denoisising框架中。广泛的实验表明,我们的方法可以在定量和视觉上增强各种合成和真实网格模型的脱氧结果。

Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly-used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源