论文标题

在$(p,q)$ - 键入大量的强大定律,用于独立随机变量的序列

On the $(p,q)$-type Strong Law of Large Numbers for Sequences of Independent Random Variables

论文作者

Thành, Lê Vǎn

论文摘要

Li,Qi和Rosalsky(Trans。Amer。Math。Soc。,2016年)介绍了Marcinkiewicz-Zygmund大型法律(SLLN)的改进,所谓的$(p,q)$ - 类型 - 类型SLLN,其中$ 0 <p <2 $和$ q> 0 $。他们为这两种情况下的新类型SLL获得了一组必要和充分的条件:$ 0 <p <1 $,$ q> p $和$ 1 \ le p <2,q \ ge 1 $。本文通过为$ 0 <q \ le p <1 $和$ 0 <q <q <q <1 \ le p <2 $提供了$(p,q)$ - 类型SLL的必要条件,从而为Li,Qi和Rosalsky提出的开放问题提供了完整的解决方案。我们考虑随机变量在真正可分开的Banach Space $ \ Mathbf {B} $中取值,但是即使$ \ Mathbf {B} $是真实行,结果也是新的。此外,一系列随机变量的条件$ \ weft \ {x_n,n \ ge 1 \ right \} $满足$(p,q)$ - 类型slln的条件可提供稳定的类型$ p $ p $ p $ p $ banach空间的精确表征。

Li, Qi, and Rosalsky (Trans. Amer. Math. Soc., 2016) introduced a refinement of the Marcinkiewicz--Zygmund strong law of large numbers (SLLN), so-called the $(p,q)$-type SLLN, where $0<p<2$ and $q>0$. They obtained sets of necessary and sufficient conditions for this new type SLLN for two cases: $0<p<1$, $q>p$, and $1\le p<2,q\ge 1$. This paper gives a complete solution to open problems raised by Li, Qi, and Rosalsky by providing the necessary and sufficient conditions for the $(p,q)$-type SLLN for the cases where $0<q\le p<1$ and $0<q<1\le p<2$. We consider random variables taking values in a real separable Banach space $\mathbf{B}$, but the results are new even when $\mathbf{B}$ is the real line. Furthermore, the conditions for a sequence of random variables $\left\{X_n, n \ge 1\right\}$ satisfying the $(p, q)$-type SLLN are shown to provide an exact characterization of stable type $p$ Banach spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源