论文标题
非最小耦合常数和原始de Sitter状态
The non-minimal coupling constant and the primordial de Sitter state
论文作者
论文摘要
动力学系统方法用于研究具有非最低耦合标量场和潜在函数的平坦Friedmann-Robertson-Walker宇宙学模型的动力学。执行的分析区分了非最小耦合常数参数$ξ= \ frac {3} {16} $的值,这是五维重力理论中的保形耦合。结果表明,对于标量场的无限值的单一势函数,存在通用的de Sitter和Einstein-de Sitter状态。对于宇宙的扩展,DE Sitter状态对于潜在函数的扩展不稳定,该功能不会比线性变化更快。这会导致通用的宇宙学进化,而无需初始奇异。
Dynamical systems methods are used to investigate dynamics of a flat Friedmann-Robertson-Walker cosmological model with the non-minimally coupled scalar field and a potential function. Performed analysis distinguishes the value of non-minimal coupling constant parameter $ξ=\frac{3}{16}$, which is the conformal coupling in five dimensional theory of gravity. It is shown that for a monomial potential functions at infinite values of the scalar field there exist generic de Sitter and Einstein-de Sitter states. The de Sitter state is unstable with respect to expansion of the Universe for potential functions which do not change faster than linearly. This leads to a generic cosmological evolution without the initial singularity.