论文标题
Cox回归模型的贝叶斯变量选择,其系数在空间上有不同的系数
Bayesian Variable Selection for Cox Regression Model with Spatially Varying Coefficients with Applications to Louisiana Respiratory Cancer Data
论文作者
论文摘要
Cox回归模型是生存分析中的常用模型。在公共卫生研究中,临床数据通常是从不同位置的医疗服务提供者那里收集的。协变量对特定疾病的存活率的影响有很大的地理变化。在本文中,我们关注具有空间变化系数的COX回归模型的可变选择问题。我们提出了一个贝叶斯分层模型,该模型在确定回归系数是否在空间上变化之前结合了稀疏性的马蹄形和点质量混合物。有效的两阶段计算方法用于后推理和可变选择。它基本上应用了现有的方法,可将COX模型的部分可能性最大化,然后首先独立地使用站点,然后根据第一阶段的结果应用MCMC算法进行可变选择。进行了广泛的仿真研究,以检查所提出方法的经验性能。最后,我们将提出的方法应用于SEER计划中路易斯安那州的呼吸癌的真实数据集。
The Cox regression model is a commonly used model in survival analysis. In public health studies, clinical data are often collected from medical service providers of different locations. There are large geographical variations in the covariate effects on survival rates from particular diseases. In this paper, we focus on the variable selection issue for the Cox regression model with spatially varying coefficients. We propose a Bayesian hierarchical model which incorporates a horseshoe prior for sparsity and a point mass mixture prior to determine whether a regression coefficient is spatially varying. An efficient two-stage computational method is used for posterior inference and variable selection. It essentially applies the existing method for maximizing the partial likelihood for the Cox model by site independently first, and then applying an MCMC algorithm for variable selection based on results of the first stage. Extensive simulation studies are carried out to examine the empirical performance of the proposed method. Finally, we apply the proposed methodology to analyzing a real data set on respiratory cancer in Louisiana from the SEER program.