论文标题

广义的Kähler几乎是Abelian Lie团体

Generalized Kähler almost abelian Lie groups

论文作者

Fino, Anna, Paradiso, Fabio

论文摘要

我们研究了几乎Abelian Lie群体的左旋广义Kähler结构,即具有编成一个Abelian正常亚组的可解决的谎言组。特别是,我们对六维的几乎Abelian Lie群体进行了分类,该群体承认了一个左右不变的复杂结构,并确定其中哪些具有左右不变的Hermitian结构,其基本的2Form为$ \ partial \ bar \ bar \ partial $ clucted。我们获得了六维广义的kähler几乎是阿贝利亚谎言组的分类,并确定了6维紧凑的几乎是Abelian Solvmanifolds,承认不变的广义Kähler结构。此外,我们证明了与植物泊松结构的存在以及多形流有关的一些结果。

We study left-invariant generalized Kähler structures on almost abelian Lie groups, i.e., on solvable Lie groups with a codimension-one abelian normal subgroup. In particular, we classify six-dimensional almost abelian Lie groups which admit a left-invariant complex structure and establish which of those have a left-invariant Hermitian structure whose fundamental 2-form is $\partial \bar \partial$-closed. We obtain a classification of six-dimensional generalized Kähler almost abelian Lie groups and determine the 6-dimensional compact almost abelian solvmanifolds admitting an invariant generalized Kähler structure. Moreover, we prove some results in relation to the existence of holomorphic Poisson structures and to the pluriclosed flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源