论文标题
对流体动力稳定性和控制的二阶伴随敏感性
Second-order adjoint-based sensitivity for hydrodynamic stability and control
论文作者
论文摘要
基于伴随的灵敏度分析通常用于今天用来有效评估开环控制对不稳定流量线性稳定性特性的影响。灵敏度图确定了最有效的小振幅控制的区域,即产生最大的一阶(线性)特征值变化。在这项研究中,提出了一种伴随方法来计算二阶(二次)灵敏度操作员,并应用于经过圆柱体的流动,该圆柱体由稳定的身体力或被动器件模型控制。获得二阶特征值变化的地图,而没有计算受控的基本流量和本征模。对于有限控制幅度,二阶分析提高了一阶预测的准确性,并告知其有效性范围,以及它低估还是高估了实际特征值的变化。确定控制几乎没有或没有一阶效应,而是二阶效应的区域。在圆柱唤醒中,对照缸的效应往往被一阶灵敏度低估了,包括二阶效应会产生较大的流动重新定位区域。二阶效应可以分解为两种机制:二阶基流量修饰,以及基本流量和本征二摩德一阶修饰之间的相互作用。两者通常在气缸唤醒的敏感区域中同样贡献。利用二阶灵敏度操作员,通过二次特征值问题计算最大化总二阶稳定的最佳控制。该方法适用于其他类型的控制(例如壁吹/吸和形状变形)和其他特征值问题(例如,稳定流动中的时间谐波扰动的扩增或分辨率增益)。
Adjoint-based sensitivity analysis is routinely used today to assess efficiently the effect of open-loop control on the linear stability properties of unstable flows. Sensitivity maps identify regions where small-amplitude control is the most effective, i.e. yields the largest first-order (linear) eigenvalue variation. In this study an adjoint method is proposed for computing a second-order (quadratic) sensitivity operator, and applied to the flow past a circular cylinder, controlled with a steady body force or a passive device model. Maps of second-order eigenvalue variations are obtained, without computing controlled base flows and eigenmodes. For finite control amplitudes, the second-order analysis improves the accuracy of the first-order prediction, and informs about its range of validity, and whether it underestimates or overestimates the actual eigenvalue variation. Regions are identified where control has little or no first-order effect but a second-order effect. In the cylinder wake, the effect of a control cylinder tends to be underestimated by the first-order sensitivity, and including second-order effects yields larger regions of flow restabilisation. Second-order effects can be decomposed into two mechanisms: second-order base flow modification, and interaction between first-order modifications of the base flow and eigenmode. Both contribute equally in general in sensitive regions of the cylinder wake. Exploiting the second-order sensitivity operator, the optimal control maximising the total second-order stabilisation is computed via a quadratic eigenvalue problem. The approach is applicable to other types of control (e.g. wall blowing/suction and shape deformation) and other eigenvalue problems (e.g. amplification of time-harmonic perturbations, or resolvent gain, in stable flows).