论文标题

PANONET:通过嵌入位置敏感的特征嵌入实时的全景进行分割

PanoNet: Real-time Panoptic Segmentation through Position-Sensitive Feature Embedding

论文作者

Chen, Xia, Wang, Jianren, Hebert, Martial

论文摘要

我们提出了一个简单,快速且灵活的框架,以同时生成语义和实例掩码,以进行泛滥分割。我们的方法称为Panonet,结合了一种干净自然的结构设计,该设计将问题纯粹作为分段任务解决,而无需耗时的检测过程。我们还通过计算对象的外观及其空间位置来介绍对位置敏感的嵌入。总体而言,全景可以实时产生高分辨率CityScapes图像的高泛质量结果,比所有其他具有可比性能的方法都要快得多。我们的方法很好地满足了许多应用程序(例如自动驾驶和增强现实)的实际速度和内存要求。

We propose a simple, fast, and flexible framework to generate simultaneously semantic and instance masks for panoptic segmentation. Our method, called PanoNet, incorporates a clean and natural structure design that tackles the problem purely as a segmentation task without the time-consuming detection process. We also introduce position-sensitive embedding for instance grouping by accounting for both object's appearance and its spatial location. Overall, PanoNet yields high panoptic quality results of high-resolution Cityscapes images in real-time, significantly faster than all other methods with comparable performance. Our approach well satisfies the practical speed and memory requirement for many applications like autonomous driving and augmented reality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源