论文标题
贝叶斯从可视化数据中辅助推断
Bayesian-Assisted Inference from Visualized Data
论文作者
论文摘要
贝叶斯对数据解释的看法表明,可视化用户应根据新观测值捕获的参数值的信息量来更新其对参数值的现有信念。扩展了应用贝叶斯模型以了解和评估可视化的信念更新的最新工作,我们展示了如何使用贝叶斯推论的预测来指导更多理性的信念更新。我们设计了一个贝叶斯推理的不确定性类比,该不确定性比喻将观察到的数据中的不确定性与用户的主观不确定性联系起来,并且后验可视化规定了用户应如何在以前的信念和观察到的数据的情况下更新信念。在对4,800人的预注册实验中,我们发现,当新观察到的数据样本相对较小(n = 158)时,这两种技术都可靠地改善了人们的贝叶斯人的平均更新,而与当前可视化数据的不确定性的最佳实践相比。对于大型数据样本(n = 5208),人们的最新信念倾向于更加偏离贝叶斯模型的处方,我们发现证据表明,两种形式的贝叶斯援助形式的有效性可能取决于人们对信任数据来源的倾向。我们讨论了我们的结果如何提供对信仰更新和主观不确定性的单个过程的见解,以及解释的这些方面如何为更复杂的交互式可视化铺平了道路,以进行分析和交流。
A Bayesian view of data interpretation suggests that a visualization user should update their existing beliefs about a parameter's value in accordance with the amount of information about the parameter value captured by the new observations. Extending recent work applying Bayesian models to understand and evaluate belief updating from visualizations, we show how the predictions of Bayesian inference can be used to guide more rational belief updating. We design a Bayesian inference-assisted uncertainty analogy that numerically relates uncertainty in observed data to the user's subjective uncertainty, and a posterior visualization that prescribes how a user should update their beliefs given their prior beliefs and the observed data. In a pre-registered experiment on 4,800 people, we find that when a newly observed data sample is relatively small (N=158), both techniques reliably improve people's Bayesian updating on average compared to the current best practice of visualizing uncertainty in the observed data. For large data samples (N=5208), where people's updated beliefs tend to deviate more strongly from the prescriptions of a Bayesian model, we find evidence that the effectiveness of the two forms of Bayesian assistance may depend on people's proclivity toward trusting the source of the data. We discuss how our results provide insight into individual processes of belief updating and subjective uncertainty, and how understanding these aspects of interpretation paves the way for more sophisticated interactive visualizations for analysis and communication.