论文标题

帕金森氏病的基于学习的计算机辅助处方模型:数据驱动的观点

Learning-based Computer-aided Prescription Model for Parkinson's Disease: A Data-driven Perspective

论文作者

Shi, Yinghuan, Yang, Wanqi, Thung, Kim-Han, Wang, Hao, Gao, Yang, Pan, Yang, Zhang, Li, Shen, Dinggang

论文摘要

在本文中,我们研究了一个新的问题:“针对PD患者的自动处方建议”。为了实现这一目标,我们首先通过收集1)PD患者的症状来构建数据集,以及2)神经病学家提供的处方药。然后,我们通过学习观察到的症状与处方药之间的关系来建立一个新型的计算机辅助处方模型。最后,对于新的患者,我们可以通过我们的处方模型建议(预测)(预测)适当的处方药观察到的症状。从方法论中,我们提出的模型,即通过学习潜在症状(PALA)的处方,可以建议使用数据的多模式表示。在帕拉斯(Palas),学会了潜在的症状空间,以更好地对症状和处方药之间的关系进行建模,因为它们之间存在很大的语义差距。此外,我们为Palas提供了一种有效的交替优化方法。我们使用Nanjing Brain医院的136名PD患者收集的数据评估了我们的方法,该数据可以被视为PD研究界的大型数据集。实验结果证明了我们方法在此建议任务中的有效性和临床潜力,如果与其他竞争方法相比。

In this paper, we study a novel problem: "automatic prescription recommendation for PD patients." To realize this goal, we first build a dataset by collecting 1) symptoms of PD patients, and 2) their prescription drug provided by neurologists. Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug. Finally, for the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model. From the methodology part, our proposed model, namely Prescription viA Learning lAtent Symptoms (PALAS), could recommend prescription using the multi-modality representation of the data. In PALAS, a latent symptom space is learned to better model the relationship between symptoms and prescription drug, as there is a large semantic gap between them. Moreover, we present an efficient alternating optimization method for PALAS. We evaluated our method using the data collected from 136 PD patients at Nanjing Brain Hospital, which can be regarded as a large dataset in PD research community. The experimental results demonstrate the effectiveness and clinical potential of our method in this recommendation task, if compared with other competing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源