论文标题
变形的量子力学和Landau问题
Deformed Quantum Mechanics and the Landau Problem
论文作者
论文摘要
考虑了基于Fock代数的修饰,Landau问题的变形被考虑。讨论了Hamiltonians F(H)的系统,其中H是最低水平的Landau Hamiltonian。研究了情况$ f(h)=αh + b h^2 $,并显示在此特定示例中,可以使用二次Zeeman效应数据和Breit-Rabi公式来固定问题的参数。拟议的方法允许精确地解决文献中未曾讨论过的问题的类似Landau的家庭。
A deformation of the Landau problem based on a modification of Fock algebra is considered. Systems with Hamiltonians f(H) where H is the Landau Hamiltonian in the lowest level are discussed. The case $f(H) = α H + b H^2$ is studied and it is shown that in this particular example, parameters of the problem can be fixed by using the quadratic Zeeman effect data and the Breit- Rabi formula. The proposed approach allows to solve exactly Landau-like families of problems not previously discussed in the literature.